
Karun River – Iran

May 2016 Sepideh Nayemi International cooperation coordinator Geneva Water Bureau- (Direction générale de l'eau)- DETA

Department of Environment, Transport and Agriculture

ქართველო Georgia

العراق Iraq Caspian Sea

Armenia Azerbaijan

Surface : 1'648'195 km² Altitude : 28 to 5'610 m Climate : humid to hyper arid Precipitation : < 50 to > 1'500 mm / year Average temperature: de 9 to 30 degree

Türkmenistan Turkmenistan

Gulf of Oman

Точикисто Tajikistan

افغانستان Afghanistan

> پاکستان Pakistan

ایران Iran

الإمارات

العربية

الكويك Kuwait

Persian Gulf

Qatar

البحرين Bahrain قطر

9 - - 00

Vertebrates: 1,115 species

- 524 species of birds
- 226 species of reptiles
- 174 species of inland fishes
- 168 Species of mammals
- 22 species of amphibians

1,810 endemic plant species

Endemic vertebrates of Iran

Population : 80'000'000 inhabitants

1000 cities 8 > 1'000'000 inhab.

Teheran : 9'000'000 inhabitants

WATER STRESS BY COUNTRY

ratio of withdrawals to supply

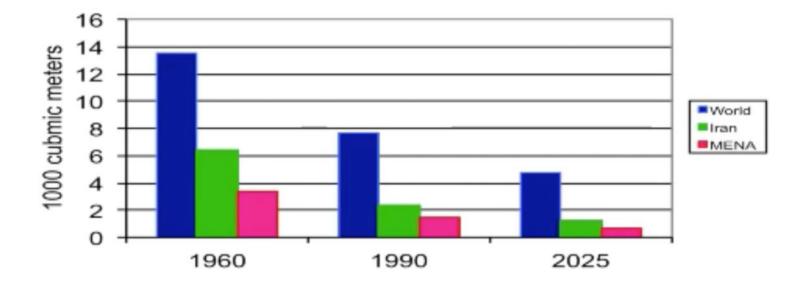
La La M Hi

Low stress (< 10%)

Low to medium stress (10-20%) Medium to high stress (20-40%) High stress (40-80%) Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

AQUEDUCT



Department of Environment, Transport and Agriculture

Imperial College London

Available Water per Capita

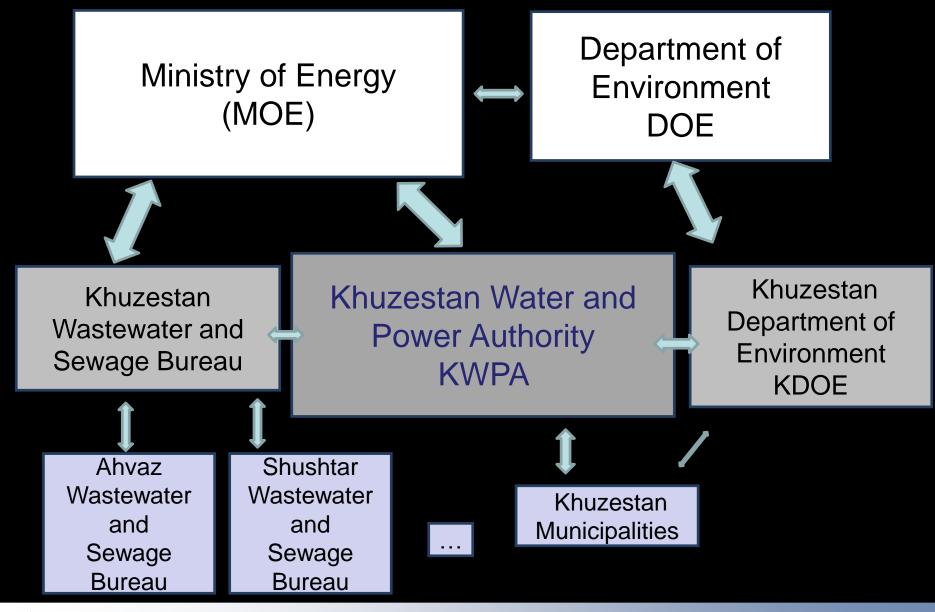
HEESA Hydro-Environment & Energy System Analyse Research Group

Department of Environment, Transport and Agriculture

Why water crises in Iran

Population growth

Agriculture


- 13% of GDP
- 15% of total area
- 23% of the jobs
- 90% of the water consumption

Mismanagement of water resources

Climate change?

Department of Environment, Transport and Agriculture

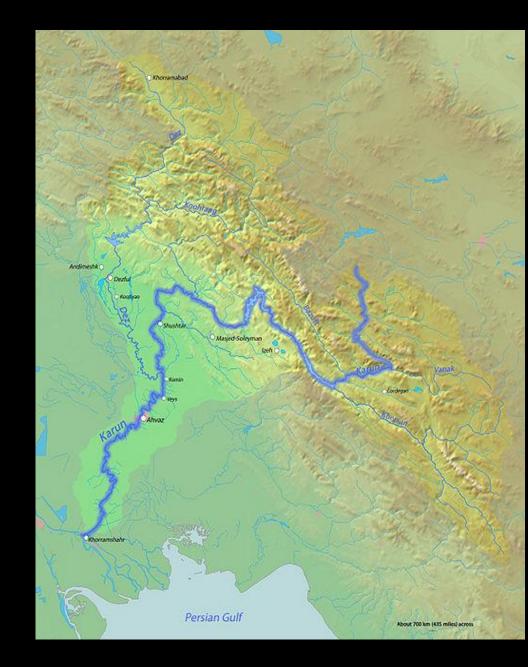
Department of Environment, Transport and Agriculture

Karun Mission: 6 - 13 November 2015

Organisation :

- UNDP Iran
- Khuzestan Water and Power Authority (Host)

Objectif :


- Evaluation of the present situation of Karun and the drives causing its problems, (qualitative approach based on 4 days field visit and exchange with local experts.
- Sharing Geneva canton's experience and best practice to contribute to the restoration of Karun.
- Recommendation of pilot projects to the local Government

Department of Environment, Transport and Agriculture

Karun river:

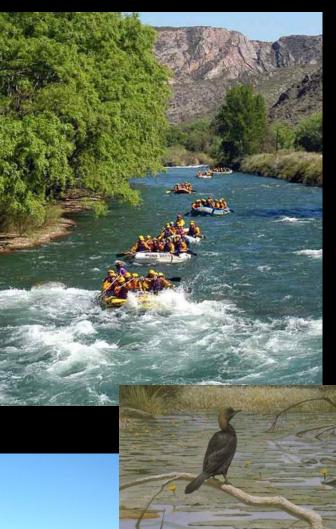
- The largest river basin in Iran
- Length: 950 km
- Debit: 575 m³/s
- Basin surface: approximately 62'718 km2
- 3 provinces Khuzestan downstream (4 millions inhabitants)
- Value:
- Environmental Economic Cultural Wealth

River Functions

- Drinking water
- Electricity : several dams, including the largest of the Middle East, capacity 2000 MW
- Agriculture: Traditionally Okra and dates, today sugarcane, more than thousands of hectares
- Industry: fiberboard manufacturing, industrial alcohol, animal feed, sugarcane processing (industrial area of 70,000 hectares south of Ahvaz)

River Functions :

Cultural and natural heritage in connection with wetlands (ex. Shadegan wetland)


Fishing

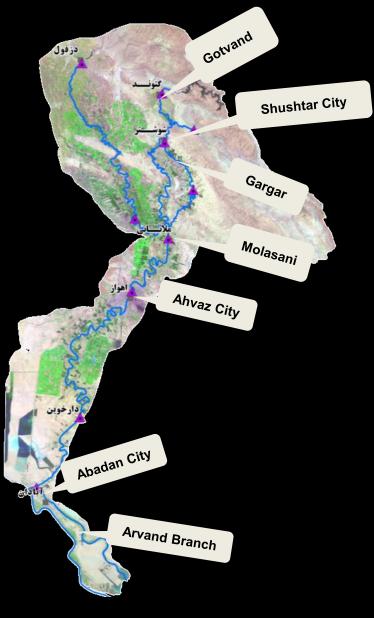


Photo : Javid Tafazoli

SFARS NEWS AGENC

Field visit: 13 sites

Gotvand Dam

Largest dam of Iran

Height: 182 m

Volume : 28,500,000 m³

Reservoir capacity: 5,1 milliards

Production capacity: 2'000 MW

Problem : Salinity

Shoteit Band-e Mizan upstream

- Habitat diversity
- Rare species
- Remarkable landscapes

Problems:

Risk of anthropogenic pressure and degradation of river banks and bed

Gargar UNESCO hydraulic system and downstream sector

- Cultural heritage
- Remarkable landscape
- Diversity of fauna and flora
- Interesting river structure

Problems :

- Waste discharge on the banks
- Erosion and embankments
- Domestic wastewater

Band-e Ghir (Dez, Shoteit and GarGar Junction)

 Remarquable habitats including reed bed

Problems

• Waste dumping on the banks

Molasani Floating Bridge and Hydrometric Station

- Large reed bed
- Problems : (left bank)
- Waste dumping
- Erosion
- Domestic wastewater

Zergan Construction Waste Discharge Area and Waste Water Outlet

Anthropic pressure!

Zeitoun pumping station

Problem : sedimentation of the water pumping station

Department of Environment, Transport and Agriculture

Ahvaz Kianpars beach

 Embankment and degradation of the river banks

Department of Environment, Transport and Agriculture

Ahvaz Karun's 5th Bridge

- Banks artificialisation
- Water pumping station next to the domestic wastewater discharge
- Destruction of the islets of reed bed inside the river bed

Aquaculture site

 Functional and well maintained system

Problems:

- Water damanding
- Potential source of pollution
- Source of river salinity

Sugarcane field

- Use of large quantities of water
- Source of pollution
 - Source of river salinity
 - Not economically profitable

Palm Grove

Traditional culture matching with the environmental conditions of the region

Date cultivation affected by river salinity

Department of Environment, Transport and Agriculture

Diagnosis and recommendations

Department of Environment, Transport and Agriculture

Ecological value

- River space
- Natural sectors with habitat diversity
- Threatened and endemic species

Recommandations

- Protection
- Promotion
- Education

Water Quality

Control of water quality = Karun's priority problem

- Discharge of untreated domestic sewage and other effluents linked to human activities (agricultural, industrial, ...) to the river
- Open air dumps of waste on the banks of the river (diffuse pollution)

Water Quality

Recommendations

- Etablishing or applying the legal frame for water quality management (definition of the standards and limits for chemical and physical parameters in the river)
- Establishing or applying waste management (avoiding waste discharge on the banks)
- Identification of different pollution sources (wastewater network, punctual effluent, diffused pollutions due to anthropic activities)

Water Quality

Recommendations

- Controls, monitoring for water quality diagnostic
- Planning of infrastructure for wastewater evacuation and treatment
- Projects and actions for implementation of collection sewage network and construction of wastewater treatment plants.

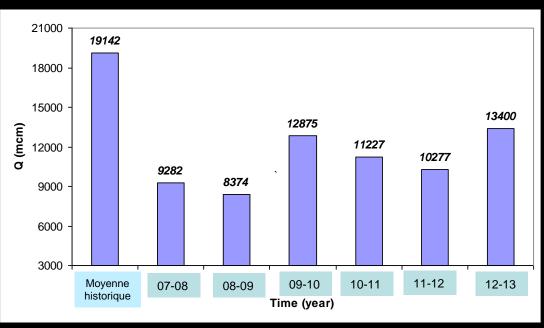
Water Salinity

- Human activities : Sugarcane monoculture Fish farming Dam Gotvand
- Tides of the Persian Gulf in the river

Water Salinity

Recommandations

- Establishment of a sustainable and integrated management of salinity:
- Adaptation of agricultural practices in the region (crop diversification)
- Monitoring of effluent (aquaculture, agriculture)


Water Quantity-Resource

- Karun = important resource for the whole river basin and its population
- Multi and non contriled uses -> scarcity -> potential conflicts
- Lack of an integrated and sustainable management of water resources
- Decrease of Karuns' debit
- Artificial river flow because of dams

"The drying out of rivers and wetlands in Khuzestan has changed the regional landscape in a way war never did ..."

Water Quantity– Ressource

Recommendations

Water resource assessment:

- Assess and quantify all water uses in Karun watershed
- Establish and apply a policy of sustainable water use with an integrated water quantity management in the watershed

Define and implement an adequate flow management pattern:

- Monitor sedimentation process in Karun River
- Ensure frequency of morphogenic floods o Define and ensure minimum flow

River Morphology

- Many natural sectors
- River space

but

- General tendency to degrade river bed and banks
- Urban waste
- Embankment

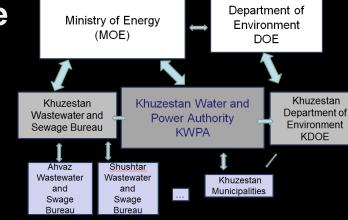
River Morphology

- Conservation of the diversity of river bed and banks
- Promotion of river renaturation:
 - Restoration of river quality and morphology diversity (bed and bank)
 - Use of bioengineering for bank stabilization
- Valuation of landscape
- Creation of leisure area

Gouvernance- Administrative structure

- Administrative structures
 - \rightarrow Well structured and identified

But


- Disintegrated water management
- Lack of long term vision
- Lack of communication between different entities

Recommendations

- Setting objectives and priorities for the watershed
- Integrated water management

Technical expertise

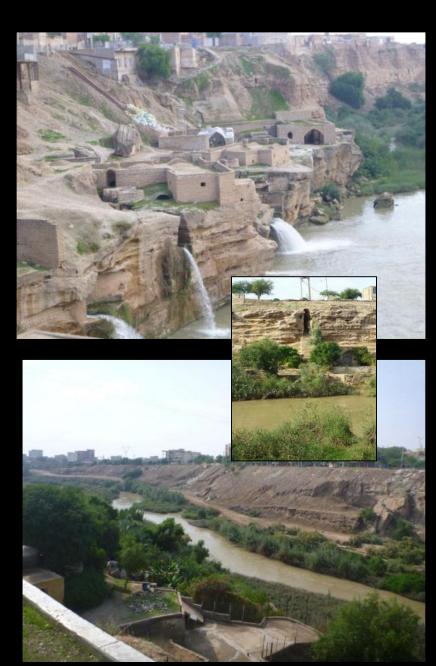
- High scientific level and technological expertise
- Many data
 little used / organized

Pilot Projects

Department of Environment, Transport and Agriculture

Gargar UNESCO hydraulic system and downstream sector

Quality :


- Sewage managamenet system
- Urban waste managment

River morphology

- Removal of the waste from the bank
- Bioengineering protection of the banks
- Valuation of riverine vegetation

Public awarness

- Production of awarness material
- Valuation of historical corridors

Ahvaz Karun's 5th Bridge

Quality :

• Sewage managamenet system

River morphology

- River renaturation
- Creation of a leisure area

Public awarness

Production of awarness material

Next steps

- Validation of the report by KWPA
- Final selection of the pilot project
- New collaboration frame (UNDP)
- Project and implementation

Private companies and sector based needs

- Water saving tools in agriculture
- Technical support for wastewater treatement plants
- Urbanwaste management (north of Iran)
- Water quality of the drinking water supply
- Water desalinization

